Hexadentate hydroxypyridonate iron chelators based on TREN-Me-3,2-HOPO: variation of cap size.
نویسندگان
چکیده
TREN-Me-3,2-HOPO, TR322-Me-3,2-HOPO, TR332-Me-3,2-HOPO, and TRPN-Me-3,2-HOPO correspond to stepwise replacement of ethylene by propylene bridges. A series of tripodal, hexadentate hydroxypyridinone ligands are reported. These incorporate 1-methyl-3,2-hydroxypyridinone (Me-3,2-HOPO) bidentate chelating units for metal binding. They are varied by systematic enlargement of the capping scaffold which connects the binding units. The series of ligands and their iron complexes are reported. Single crystal X-ray structures are reported for the ferric complexes of all four tripodal ligands: FeTREN-Me-3,2-HOPO.0.375C(4)H(10)O.0.5CH(2)Cl(2) [P2(1)/n (No. 14), Z = 8, a = 20.478(3) A, b = 12.353(2) A, c = 27.360(3) A; beta = 91.60(1) degrees ]; FeTR322-Me-3,2-HOPO.CHCl(3).0.5C(6)H(14).CH(3)OH.0.5H(2)O [P2(1)/n (No. 14), Z = 4, a = 12.520(3) A, b = 22.577(5) A, c = 16.525(3) A; beta = 111.37(3) degrees ]; FeTR332-Me-3,2-HOPO.3.5CH(3)OH [C2/c (No. 15), Z = 8, a = 13.5294(3) A, b = 19.7831(4) A, c = 27.2439(4) A; beta = 101.15(3) degrees ]; FeTRPN-Me-3,2-HOPO.C(3)H(7)NO.2C(4)H(10)O [P1 (No. 2), Z = 2, a = 11.4891(2) A, b = 12.3583(2) A, c = 15.0473(2) A; alpha = 86.857(1) degrees, beta = 88.414(1) degrees, gamma = 70.124(1) degrees ]. The structures show the importance of intermolecular hydrogen bonds and the effect of cap enlargement to the stability and geometry of the metal complexes throughout the series. All protonation and iron complex formation constants have been determined from solution thermodynamic studies. The TREN-capped derivative is the most acidic, with a cumulative protonation constant, log beta(014), of 25.95. Corresponding values of 26.35, 26.93, and 27.53 were obtained for the TR322, TR332, and TRPN derivatives, respectively. The protonation constants and NMR spectroscopic data are interpreted as being due to the influence of specific hydrogen-bond interactions. The incremental enlargement of ligand size results in a decrease in iron-chelate stability, as reflected in the log beta(110) values of 26.8, 26.2, 26.42, and 24.48 for the TREN, TR322, TR332, and TRPN derivatives, respectively. The metal complex formation constants are also affected by the acidity of a proximal (non-metal-binding) amine in the complexes, a trend consistent with the effects of internal hydrogen bonding. The ferric complexes display reversible reduction potentials (measured relative to the normal hydrogen electrode (NHE)) between -0.170 and -0.223 V.
منابع مشابه
The hexadentate hydroxypyridinonate TREN-(Me-3,2-HOPO) is a more orally active iron chelator than its bidentate analogue.
Bidentate hydroxypyridinone chelators effectively complex and facilitate excretion of trivalent iron. To test the hypothesis that hexadentate chelators are more effective than bidentate chelators at low concentrations, urinary and biliary Fe excretions were determined in Fe-loaded rats before and after administration of a bidentate chelator, Pr-(Me-3,2-HOPO), or its hexadentate analogue, TREN-(...
متن کاملThe effect of ligand scaffold size on the stability of tripodal hydroxypyridonate gadolinium complexes.
The variation of the size of the capping scaffold which connects the hydroxypyridonate (HOPO) binding units in a series of tripodal chelators for gadolinium (Gd) complexes has been investigated. A new analogue of TREN-1-Me-3,2-HOPO (1) (TREN = tri(ethylamine)amine) was synthesized: TREN-Gly-1-Me-3,2-HOPO (2) features a glycine spacer between the TREN cap and HOPO binding unit. TRPN-1-Me-3,2-HOP...
متن کاملSynthesis of homochiral tris(2-alkyl-2-aminoethyl)amine derivatives from chiral alpha-amino aldehydes and their application in the synthesis of water soluble chelators.
A novel synthesis of 3-fold symmetric, homochiral tris(2-alkyl-2-aminoethyl)amine (TREN) derivatives is presented. The synthesis is general in scope, starting from readily prepared chiral alpha-amino aldehydes. The optical purity of the N-BOC protected derivatives of tris(2-methyl-2-aminoethyl)amine and tris(2-hydroxymethyl-2-aminoethyl)amine has been ascertained by polarimetry and chiral NMR c...
متن کاملGadolinium(III) 1,2-hydroxypyridonate-based complexes: toward MRI contrast agents of high relaxivity.
Prospective gadolinium(III) MRI contrast agent precursors [Gd-TREN-1,2-HOPO] (1) [TREN-1,2-HOPO = tris[(1-hydroxy-2-oxo-1,2-dihydropyridine-6-carboxamido)ethyl]amine] and [Gd-TREN-bis(Me-3,2-HOPO)-1,2-HOPO] (2) have been synthesized and characterized by relaxometric measurements. The water proton relaxivity values of 1 and 2 (20 MHz and 25 degrees C) are 9.5 and 9.3 mM(-)(1)s(-)(1), respectivel...
متن کاملToward optimized high-relaxivity MRI agents: thermodynamic selectivity of hydroxypyridonate/catecholate ligands.
The thermodynamic selectivity for Gd(3+) relative to Ca(2+), Zn(2+), and Fe(3+) of two ligands of potential interest as magnetic resonance imaging (MRI) contrast agents has been determined by NMR spectroscopy and potentiometric and spectrophotometric titration. The two hexadentate ligands TREN-6-Me-3,2-HOPO (H(3)L2) and TREN-bisHOPO-TAM-EA (H(4)L3) incorporate 2,3-dihydroxypyridonate and 2,3-di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inorganic chemistry
دوره 41 25 شماره
صفحات -
تاریخ انتشار 2002